Noë Flatreaud

2^136279841 is prime

Mersenne Prime Number discovery

8816943275038332655539391003781173589712073545090660410671563764124226306947568414417259903477232831088375097399597768741641186106798957685533486472399520506079844922872135806124407652553947877500043953475017015497457628341029584810238352553521922001801984985521368228935442123373194104843685193736508609493602871131747101857143206470819983730614862878257124301338862520617391027430764695418172448981500830593725972817584347196930450501601062420511524139611706375859581853972235578132879151283280188390576132099383890565829665055240913834318355222765774891177966975003109329409338674423161934835120255151308427150097668052460299803048486048403202837881227404218937078614698622508383318025612408295292909170788443657204950258082123770056006503434172356329958086453317888189489081714858172517220127620179692376318258610620732850005640787647953566591967819045075816046329387883686479641978056945882551643497172451966966844890200336467664985643635857298544158284931783349632302774755550728620334625482940875281953177151254853423625353298357223118900219491658652158320…

The Great Internet Mersenne Prime Search (GIMPS) has discovered the largest known prime number, 2^136279841 — 1, having 41,024,320 decimal digits. Luke Durant, from San Jose, California, found the prime on October 12th.

The new prime number, also known as M136279841, is calculated by multiplying together 136,279,841 twos, and then subtracting 1. It is over 16 million digits larger than the previous record prime number, in a special class of extremely rare prime numbers known as Mersenne primes. It is only the 52nd known Mersenne prime ever discovered, each increasingly more difficult to find.

Mersenne primes were named for the French monk Marin Mersenne, who studied these numbers more than 350 years ago.

https://www.mersenne.org/primes/?press=M136279841

#cryptography #infosec #math